Enhanced simultaneous detection of ractopamine and salbutamol--Via electrochemical-facial deposition of MnO2 nanoflowers onto 3D RGO/Ni foam templates.
نویسندگان
چکیده
In this paper, we report a facile method to successfully fabricate MnO2 nanoflowers loaded onto 3D RGO@nickel foam, showing enhanced biosensing activity due to the improved structural integration of different electrode materials components. When the as-prepared 3D hybrid electrodes were investigated as a binder-free biosensor, two well-defined and separate differential pulse voltammetric peaks for ractopamine (RAC) and salbutamol (SAL) were observed, indicating the simultaneous selective detection of both β-agonists possible. The MnO2/RGO@NF sensor also demonstrated a linear relationship over a wide concentration range of 17 nM to 962 nM (R=0.9997) for RAC and 42 nM to 1463 nM (R=0.9996) for SAL, with the detection limits of 11.6 nM for RAC and 23.0 nM for SAL. In addition, the developed MnO2/RGO@NF sensor was further investigated to detect RAC and SAL in pork samples, showing satisfied comparable results in comparison with analytic results from HPLC.
منابع مشابه
High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.
The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area ca...
متن کاملFacile synthesis of porous bimetallic alloyed PdAg nanoflowers supported on reduced graphene oxide for simultaneous detection of ascorbic acid, dopamine, and uric acid.
Porous bimetallic alloyed palladium silver (PdAg) nanoflowers supported on reduced graphene oxide (PdAg NFs/rGO) were prepared via a facile and simple in situ reduction process, with the assistance of cetyltrimethylammonium bromide as a structure directing agent. The as-prepared nanocomposite modified glassy carbon electrode (PdAg NFs/rGO/GCE) showed enhanced catalytic currents and enlarged pea...
متن کاملFacile One-Step Microwave-Assisted Route towards Ni Nanospheres/Reduced Graphene Oxide Hybrids for Non-Enzymatic Glucose Sensing
In this work, a facile one-step microwave-assisted method for deposition of monodisperse Ni nanospheres on reduced graphene oxide (rGO) sheets to form Ni-rGO nanohybrids is discussed. In the presence of hydrazine monohydrate, Ni nanospheres are grown onto rGO sheets using nickel precursor and GO as starting materials in ethylene glycol (EG) solution under a low level of microwave irradiation (3...
متن کاملGreen synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors
This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) gluco...
متن کاملElectrochemical and in situ X-ray spectroscopic studies of MnO2/reduced graphene oxide nanocomposites as a supercapacitor.
Electrochemical and in situ X-ray absorption spectroscopy (XAS) measurements of various MnO2-coated carbon materials (MnO2/acid-functionalized carbon nanotubes (C-CNT), MnO2/reduced graphene oxide (RGO), and MnO2/RGO-Au electrodes) were conducted to evaluate the supercapacitive performances and electronic structures. MnO2 was deposited on the surface of C-CNT, RGO, and RGO-Au via a spontaneous ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biosensors & bioelectronics
دوره 78 شماره
صفحات -
تاریخ انتشار 2016